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I N V E R S E  S T E F A N  P R O B L E M S  

N. L. Gol'dman UDC 517.958+519.63 

We consider statements and a method for obtaining stationary solutions of boundary-value and coefficient 
inverse problems for a quasilinear Stefan problem. 

1 ~ Stefan problems in direct statement are boundary-value problems for parabolic equations in the regions 

with free boundaries on which the Stefan conditions of material or energy balance are imposed. In a thermophysical 

interpretation, these problems consist in determining the temperature distribution u(x, t) and the fronts of phase 
transitions ~(t) (one or several) under the assumption that all coefficients of the equation and the Stefan condition 

and all initial and boundary functions are specified (see, for example, [1, 2 ]). Each direct Stefan problem can be 

associated with a set of inverse problems, if, apart from the functions u(x, t) and ~(t), some functions regarded as 

given in the direct statement must be determined from certain additional information. In accordance with the sought 
characteristic of the mathematical model, inverse Stefan problems can be divided into boundary-value, coefficient, 

and retrospective ones. Just as many inverse problems of mathematical physics, inverse Stefan problems are 

incorrect [3 ], i.e., requirements for existence, uniqueness, and stationarity of a solution may be not fulfilled for 

them. The development of the theory and methods for solving this class of incorrect problems is prompted by the 

requirements of mathematical modeling of complex nonlinear processes with phase transitions in thermophysics 

and the mechanics of a continuous medium in connection with problems of improving technologies and creating 

new methods of treating materials and up-to-date engineering specimens. 
The range of practical applicability of inverse Stefan problems is extensive. Specific examples of these 

problems are presented in [4, 5 ]. Inverse Stefan problems for quasilinear parabolic equations are particularly topical 

because their solution, as a computerized calculational experiment, is in some cases practically the only means of 

studying high-temperature problems with phase transitions (in which the temperature dependence of the 

thermophysical characteristics should be taken into account). Quasilinear inverse Stefan problems are investigated 

in [6-8 ] and other works. 
2 o . We present some statements of boundary-value and coefficient inverse problems for one of the common 

versions of the quasilinear Stefan problem, viz., a two-phase problem with a single inner front: 

t) e = {O < x < , 0<t T}, 

t) e Q2 = { , ( t )  < < l ,  o < t s T } ,  

Ulx= 0 =  v(t), 0 <  t <  T ,  

(1) 

(2) 

a ( x ,  t ,  u) u x + e ( t )  u [ x = O = p ( t ) ,  O< t<_ T ,  (3) 

u lt=o = ~o (x), 0 < x < l ,  (4) 

= u* (5) U lx=~(t ) (t), O< t<. T ,  
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y ( x ,  t ,  u) lx=r ~t = [a ( x ,  t ,  u )%] lx=r  ) + Z (x ,  t ,  u) lx=r 0 < t <_ T ,  (6) 

~'] t=o = r/o' (7) 

where Lu = (a(x, t, U)Ux)x - b(x, t, u)u x - d(x,  t)u + f (x ,  t, u) is a uniformly elliptic operator and [ w ] ~ ( t )  = 

w l ~ ( t ) + o  - wlx-~(t)-o. In the direct statement,  a _ amin > 0, b, c >__ Crain > 0, d, f, v,e, p, ~o, u*, 7 > Yrnin > 0, Z are 

known functions of their  arguments,  and ~/o = const > 0. 

Statement  I. We assume that the boundary conditions at x = 0 are not known (i.e., the function v(t) in Eq. 

(2) is not known) but at the other boundary x -- l, aside from condition (3), additional information on the solution 

of the direct Stefan problem (1)-(7) is given: 

Ulx=l= g ( t ) ,  O< t <  T ,  (8) 

where g(t) is a function known for 0 _< t < T. Then  a boundary-value inverse Stefan problem arises, viz., to find 

the functions u(x,  t) in the region Q =  Q1UQ2, ~(t), and v(t) for 0 ___ t < T that satisfy conditions (1)-(8),  in which 

the input data a, b, c, d, f, e, p, u*, y, Z, ~o, g, and r/o are assumed to be given. 

This problem may be considered as that of extending the solution of the quasilinear parabolic equation (1) 

from the boundary  x = l, where the Cauchy conditions (3) and (8) are specified, into the region Q, in which phase 

transitions occur. Thus,  it may be included among noncharacteristic Cauchy problems for parabolic equations, but 

a substantial complication is posed by an unknown phase transition front that moves with time inside the region 

and divides it into two parts. 

In a thermophysical  interpretation, inverse problem (1)-(8) consists in determining the thermal conditions 

at the boundary  x -- 0 from the given temperature and heat flux at the boundary x = l, for example, when it is 

impossible to measure the temperature on part of the surface of the object considered. Additional information can 

be given not at the boundary  x -- l but, instead, at the interior point u [ x=lo = g(t), 0 < lo < l, if, for example, the 

temperature can be measured inside the body. 

We now represent  inverse problem (1)-(8) as the operator equation 

Sv = g ,  v E V, g E G,  V C L 2 [0,  T ] ,  G C L z [0 ,  T ] ,  (9) 

where S is a nonlinear operator  that puts the spur of the solution u lx=l of the direct Stefan problem (1)-(7) in 

correspondence with each element v E V. An exact solution of Eq. (9) is an element v ~ E V for which the solution 

spur a t  x -- l coincides with the given element g ~ G. 

The  requirements of classical solvability of the direct Stefan problem (1)-(7) permit selection of "natural" 

functional spaces for the input data and the solution of the inverse problem that provide determination of the 

operator S and uniqueness of the exact solution o (if any) [8 ]. Based on these requirements,  we refine Eq. (9), 

choosing 

v = {,, (o ( o ,  o ,  . t  - Ix_-o = o } ,  
t=O 

(10) 

O = { w ( t )  e c l + 2 / 2 [ O ,  T ] ,  c ( l ,  O, T) w t - L ~ l x = l = O } .  
t=O 

N o t e 1. If the boundary  conditions at x = 0 are sought in the form 

(11) 

q (t) = a (x , t ,  U) Uxl x= O, o <_ t <_ T , (12) 

the opera tor  representat ion of this  inverse problem is the following: 
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S q = g ,  q G O ,  g E G ,  

where G is defined in Eq. (11), the set O is selected from the conditions of classical solvability of the direct Stefan 

problem (1), (12), and (3)-(7), and S: | --, G is a nonlinear operator that sets up a correspondence between each 

element q E O and the solution spur u I x=l of the corresponding direct problem [8 ]. 

Statement II. Another boundary-value inverse Stefan problem on finding unknown boundary conditions at 

x -- 0 arises when additional information on the solution of the direct problem (1)-(7) is given at the final instant 

of time t -- T: 

_ _ = r / ,  ( 1 3 )  ult=T= g(x) ,  0 < x < l ,  ~lt=T 

where g(x) is a function known for x __ 0, r/ ___ 0 is a known constant, and T > 0 is a given instant of time. Here it 

is assumed that the coefficients of Eq. (1) and the Stefan condition (6), conditions (3) and (5) at the boundary x 

= l and at the phase transition front, and the initial data (4) and (7) are known functions of their arguments. It is 

required to define functions u(x, t) in Q, ~(t), and v(t) for 0 < t _< T that satisfy conditions (1)-(7) and (13). 

An inverse Stefan problem of this type models, for example, a controllable thermophysical process with a 

phase transition and consists in finding the controlling boundary conditions that ensure the desired course of the 

process. Incorrectness of this boundary-value inverse Stefan problem, apart from the absence of an exact solution 

with mismatched specification of the input data, manifests itself in the violation of the requirements of solution 

stationarity and uniqueness. Its operator representation is of the form 

S v = z ,  v G V ,  z E Z ,  (14) 

where S is a nonlinear operator that puts each element v E V, V C L2[0, T], in correspondence with a solution 

{u It=T, ~ ] t=T} of the direct Stefan problem (1)-(7) at final time instant of time. An exact solution of Eq. (14) is 

an element v ~ E V for which the corresponding solution of problem (1)-(7) at t -- T coincides with the element z 

Z, where z = {g, n}, Z = G• g is given element of the functional space G, and r/is a given number of the set 

of real numbers E. 

The possibility of determining the operator S is provided by the choice of spaces for the input data based 

on the conditions of classical solvability of the Stefan problem (1)-(7). We assume, in particular, that the set V in 

Eq. (14) has the form (10), and G -- {w(x) E C 2+a [0, 1 ]}, 0 < 2 < 1. 

Statement III. We discuss one more boundary-value inverse problem for the quasilinear Stefan problem 

(1)-(7), namely, to determine from the given information (13) functions u(x, t) in the region Q, (( t ) ,  and u*(t) 
for 0 _< t _< T that satisfy conditions (1)-(7) and (13) under the assumption that the coefficients of Eq. (i) and the 

Stefan condition (6), the boundary conditions (2) and (3), and the initial data (4) and (7) are known functions of 

their arguments. 

Possible areas where such inverse Stefan problems may arise are mathematical modeling of thermophysical 

processes with an unknown temperature of a phase transition and also of some diffusion and filtration processes 

in porous bodies (for example, in studying and exploiting oil and gas deposits). 

The corresponding operator representation is 

* u *  ( 1 5 )  Su = z ,  E ~ ,  z E Z ,  

where S: ~ --, Z is a nonlinear operator that puts each element u* ~ ~ in correspondence with a solution {u [ t=T' 
~[t=T} of the direct Stefan problem (1)-(7) at the final instant of time. An exact solution u*~ ~" of Eq. (15) 

(determined by analogy with Statement II) may be nonexistent; otherwise it does not possess the properties of 

stationarity and uniqueness. The corresponding requirements of smoothness and matching of input data make it 

possible to obtain the operator S for any u* E ~', which is chosen in the form 

c~, = u*(t) E [0, T],  c (x ,  O, T) ut-/-4Olx=~/o=O . 

t=0 
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Statement IV. We examine the coefficient inverse Stefan problem: to find functions u(x, t) in the region Q -- 
Q1 o Q2 and ~(t) for 0 __ t _< T and a coefficient f(x, t, u) in the regions D1 = Q1 x [-M 1, M 1 ], O 2 = Q2 )< [ - M 2 ,  M 2  ] 

(M k = const > 0, m a x [ u  I _< M ~, k = 1, 2) that satisfy conditions (1)-(7) and the additional condition (13). Specific 
(x,t)EQi 

examples of this coefficient problem are given in [5, 7 ] and are concerned with determining an optimal intensity 

distribution of a laser source that ensures the desired course of a melting process. We represent the problem as the 

operator equation 

S f = z ,  f E F ,  z E Z ,  (16) 

where S is a nonlinear operator setting up a correspondence between each element f of the set F and a solution 

{u] t=T, ~ [ t=-T} of the direct problem (1)-(7) at t = T. An exact solution of Eq. (16) is an element ]~ F for which 

the solution of the direct Stefan problem coincides, at t = T, with the element z E Z, z = {g, r/}, Z = G •  (g is a 

given element of the space G, and ~/ is a given number of the set of real numbers E). The incorrectness of the 

problem is exhibited by possible absence of the element yo (with mismatched input data) and violations of the 

requirements of uniqueness and stationarity. The possibility of determining the operator S for any f E F is provided 

by the corresponding selection of functional spaces for the input data and the solution with allowance for the 

conditions of classical solvability of the quasilinear Stefan problem (1)-(7). 

N o t e 2. Obviously, aside from those considered, other statements of inverse problems are possible for 

the two-phase Stefan problem (1)-(7), depending on the sought causal characteristic and the way of specifying 

additional information. There are also corresponding statements for other versions of the quasilinear Stefan problem 

(uniphase or multiphase), the set of solutions of which comprises a domain of the values of operator S. 

3 ~ Because of their incorrectness and nonlinearity, a numerical solution of inverse Stefan problems presents 

significant difficulties and calls for special regularization methods and computational algorithms. Works [6-8 ] 

proposed and substantiated a regularization method of variational type that relies on constructing quasisolutions 

and permits obtaining stationary approximate solutions. We briefly outline the essence of the method using the 

operator equation (9) as an example. 

By a quasisolution of Eq. (9) on the compact set 

VR={VE V, 

in C1+~/2[0, T] (0 < Jl < 1) we mean a set 

II v II 2 < R} 
W 2 t0,T] -- ' 

R = c o n s t  > 0 ,  

V'R= {vRE V R , Jg(VR)=inf Jg(v)}, Jg(v)= [[ Sv --gIIL2t0TI. 
vEV R 

The correctness of the problem of minimizing the functional Jg(v) on VR and the possibility of determining the 

quasisolufion I~R (nonnullness of IPR) result from the fact that Jg(V) is continuous in C 1+~/2 [0, T] on the compact 

set VR. 

If the equality inf Jg(v) = 0 holds for a certain set V~, then the exact solution v ~ belongs to V~ and the 
v~V~ 

quasisolufion ~ consists of the single element v 0 by virtue of the uniqueness of the exact solution of the inverse 

Stefan problem in Statement I. Thus, the original problem is reduced to a variational one, for which all correctness 

conditions are fulfilled. Should inf Jg(V) > O, then the following assertion is true for the quasisolutions IPR on the 
vEV~ 

compact sets VR with R _< R < R 0 = I[ v0 ][ w~2 [0,T]: any element vR of IPR converges in W z [0, T] to v 0 when 

R --, R ~ In this case, the corresponding solution of the direct Stefan problem (1)-(7) converges uniformly to {u ~ ~o}, 

that is, to the solution of the problem (1)-(7) for v =' v ~ 
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N o t e 3. When the exact solution is nonunique (for example, in Statement II), the quasisolution ~R for 

R >_ R ~ = inf II v ~ II ~ to, T] coincides with the intersection VR 0 V ~ where V ~ = {v ~ E V, gg(V ~ = 0} is the set of 
vO E i, D 

exact solutions. If 0 <R <R ~ any  element vg E I/R converges to a certain exact solution v ~ E VR o N V ~ as R -- Ro. 

N o t e 4. In the general case, without assuming the existence of an exact solution of Eq. (9) for the given 

right side g ~ G, we consider a generalized quasisolution on the compact set VR [8 ]. 

4 ~ . One of the key problems in applying the method proposed is to find the gradient of the minimized 

functional. Work [9 ] considered the conditions of differentiability of the functionals determined in solutions of the 

quasilinear Stefan problem, and obtained means of representing the differentials that are convenient for effectively 

p r e d i c t i n g  t h e  g r a d i e n t .  We now give an exp l i c i t  d i f f e r e n t i a l  e x p r e s s i o n  for  the  f u n c t i o n a l  Jg(v) = 
2 [] Sv - g II L2to, r] for Statement I of the boundary-value inverse Stefan problem: 

T (17) 
d J g ( v ) =  f a ( x ,  t ,  u )~Pxlx=oAv( t )a t ,  v ,  A v e  V ,  

0 

where the functions {~p(x, t), x(t)} are a solution of the conjugate problem representing a system defined by the 

relations 

c ( x ,  t ,  u)~Pt = (a ( x ,  t ,  u)~Px)x + ( b ( x ,  t ,  u ) -  a u ( x ,  t ,  u)Ux)~Px + 

+ (b x (x , t ,  u) + c t (x , t ,  u) - d (x , t) + fu (x , t ,  u)) V/ = O , 

0 < x < ~ ( t ) ,  ~ ( t ) < x < / ,  O < t < T ,  (18) 

~Plx=o = 0 ,  O < t < T ,  (19) 

~Plx=~(t) = x ( t ) ,  0 _< t < T ,  

a ( x ,  t ,  u) ~x + (b ( x ,  t ,  u) + e (t)) ~Plx=l = 2 ( U l x = l -  g ( t )) ,  O < t < T ,  

(20) 

(21) 

~O[t=T = O, O < - - x < l ,  (22) 

Here  

Y (x ,  t ,  U)]x=r + A (x ,  t ,  U)[x=r tc (t) = 

= [a (x ,  t ,  u) u x ~Px]x=~(t) ' 0 _< t < T ,  

JC[t=T = O. 

A (x, t ,  u)I , `=~(r)= (rt (x,  t ,  u )+ ,/. (x ,  t ,  u)u  tl x=~( t ) -  

- ~t (7,, (x ,  t ,  u) + 7u (x ,  t ,  u) Ux) I x=~(0 + (Xx (x,  t ,  u) + 

+ Zu (x,  t ,  u)ux)[~=~(t)+ [(a (x,  t ,  u)u~)~lx=~(O- 

- [(b (x,  t ,  u) - c (x,  t ,  u) ~t) uxlx=~(O ; 

(23) 

(24) 
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{u, ~} is the solution of the direct Stefan problem (1)-(7) corresponding to the boundary function v E V. 
Specifying the form of the minimized functional for various statements of inverse Stefan problems and 

examining the corresponding initial and boundary conditions for Eqs. (18) and (23), we may derive a differential 
expression for each of the statements. In the case of the uniphase Stefan problem, Eq. (23) will involve, instead of 
steps of the functions at x = ~(t), values of these functions at x = ~(t). 

The devised method of representing the differentials permits construction of effective numerical algorithms 

for finding quasisolutions of the inverse Stefan problems [4, 5, 7, 8 ]. 
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